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Abstract Two methods, following different statistical
paradigms for mapping multiple quantitative trait loci
(QTLs), were compared: the first is a frequentist, the sec-
ond a Bayesian approach. Both methods were applied to
previously published experimental data from an outbred
progeny of a single cross between two apple cultivars
(Malus pumila Mill.). These approaches were compared
with respect to (1) the models used, (2) the number of pu-
tative QTLs, (3) their estimated map positions and accu-
racies thereof and (4) the choice of cofactor markers. In
general, the strongest evidence for QTLs, provided by
both methods, was for the same linkage groups and for
similar map positions. However, some differences were
found with respect to evidence for QTLs on other linkage
groups. The effect of using cofactor markers which were
selected differently was also somewhat different.

Keywords QTL mapping methods - Comparison -
Bayesian inference - Classical statistics - MQM

Introduction

The analysis of quantitative trait loci (QTLS) using molec-
ular markers has become routine in genetic studies of
plant and animal species (see Tanksley 1993; Haley 1995;
Doerge et a. 1997; Hoeschele et a. 1997; Kearsey and
Farquhar 1998). The detection of QTLs is mostly based
on smple interval mapping (SIM), which uses a single-
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QTL model, or on methods employing an approximate
multiple QTL model (MQM) mapping (Lander and Bot-
stein 1989; Haley and Knott 1992; Jansen 1992, 1993,
1994; Zeng 1993, 1994; Jansen and Stam 1994; Xu and
Atchley 1995; Kao and Zeng 1997). Haley and Knott
(1992) and Martinez and Curnow (1992) applied an exact
two-QTL model to map linked QTLs. However, numeri-
cal computations tend to become very time consuming as
the number of QTLsin the model increases (Jansen 1992).
Kao et al. (1999), and Zeng et a. (1999) proposed a step-
wise estimation and a model selection framework for an
entire genetic architecture covering multiple QTLs, epista-
sis, GXE and pleiotropy. Carlborg et a. (2000) suggest the
utilization of genetic algorithms for asimilar purpose.

The use of Markov Chain Monte Carlo (MCMC)
methods has greatly facilitated the numerical work aris-
ing from considering exact multiple QTL models, often
based on incomplete data. These methods seem to open
new opportunities for model selection; for example, with
regard to the number of QTLs. By applying MCMC sam-
pling in the Bayesian statistical framework, Thaller and
Hoeschele (1996), Uimari et a. (1996a) and Uimari and
Hoeschele (1997) estimated the number of linked QTLs
by using fixed models with a specific linkage-status-vari-
able assigned to each QTL. Satagopan et al. (1996) used
the Bayes factor for comparing models that involved dif-
ferent numbers of QTLs. In the Bayesian ‘reversible
jump’ framework (Green 1995; Waagepetersen and
Sorensen 2001), parameter estimation and model selec-
tion can be considered simultaneously by treating the
number of QTLs as an unobserved random variable (see
Satagopan and Yandell 1996; Heath 1997; Uimari and
Hoeschele 1997; Stephens and Fisch 1998; Sillanpda and
Arjas 1998, 1999; George et al. 2000; Yi and Xu 2000a,
b; Lee and Thomas 2000; Hurme et al. 2000; Uimari and
Sillanpaa 2001). Given this wealth of new statistical tech-
niques, of which some are based on the more classical
frequentist principles and others on the Bayesian para
digm, it is only fair to enquire about their philosophical
and practica differencesin a QTL mapping context.

The Bayesian approach to stetistical inference is
based on an openly subjectivist interpretation of proba-
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bilities. The probability of an event, or more generaly,
of a proposition, is viewed as a quantification of "my”
uncertainty, or degree of belief, in that this event will
happen or that the proposition is true. The frequentist in-
terpretation of probability, on the other hand, views
probabilities as limiting frequences of the event con-
cerned, calculated from a (hypothetical) sequence of
such events realised under similar conditions (see Royall
1997; Vieland and Hodge 1998; Shoemaker et al. 1999).
In classical statistics, probabilistic statements such as
confidence intervals or P-values therefore refer to hypo-
thetical repetitions of the experiment, with the random-
ness corresponding to the variation between the resulting
data sets. Probabilities of propositions cannot be defined
within this framework because their being true or false
cannot be thought of as random outcomes in a sequence
of experiments. The Bayesian approach to statistics, on
the other hand, is entirely probahilistic, providing aso a
structured template to incorporate prior information, when
available, to the analysis. The result of the Bayesian data
analysis can be summarised in the form of the so-called
posterior distribution; that is, the (joint) conditional dis-
tribution of all unobserved variables in the considered
model given the observed data. Key quantities of interest
are then conveniently estimated in terms of expectations
with respect to such distributions, which are usually car-
ried out in practice by an MCMC procedure. It should be
noted that the application of these methods requires sub-
stantial understanding and experience of the behaviour
of MCMC agorithms under different circumstances
(Sillanp@a 1999). In contrast to the Bayesian probabilis-
tic way of summarising the results, in the classical statis-
tical analysis the results are mostly presented in the form
of point estimates of the model parameters of interest,
with additional support coming from statistical signifi-
cance testing or from finding their approximate confi-
dence regions.

In view of the fact that very different inferential ap-
proaches and statistical techniques are being applied, it
should come as no surprise that also the results of such
analyses can differ. Consequently, two paradigms cannot
directly be compared. For a comparative analysis of their
performance — for example, in the sense of being able to
detect true QTLs, and specifically so as not to raise false
alarms — one should obviously use simulated data where
the true answers are known. In genuine empirical studies
such as the present one, we do not have a certain knowl-
edge of what answers are correct and therefore no clear
winner in a comparison between different statistical
methods, let alone different paradigms, can be declared.
On balance, ‘real life'’ data sets may provide a more
challenging environment for testing, in that one or more
of the following complications may be present: (1) miss-
ing data patterns, (2) uneven distribution of markers on
the chromosomes and large variation in their degree of
informativeness, (3) deviation from assumed distribu-
tions, (4) scoring and measurement errors, (5) outliers
and (6) real genetic architecture. An interesting alterna-
tive, pointed out to us by a referee, may be found be-

tween these two: to simulate new phenotypes (from a
known genetic model) to a given ‘rea life data set,
where marker measurements are real. However, the
properties of items (4) and (6) above can then be lost. (In
fact, such an approach had been used by us prior to ana-
lysing the real data in order to verify proper mixing of
the sampling algorithm used.)

Methodological comparisons between classical and
Bayesian techniques in QTL mapping have so far been
made by the following authors. Scheler et a. (1998)
compared such methods in an inbred line cross situation
with simulated data. However, their ‘Bayesian’ method
is not strictly Bayesian; it is a likelihood method, where
all QTL positions are integrated away from the likeli-
hood expression. Uimari et a. (1996b) compared their
Bayesian method to frequentist methods using simulated
and experimental datain an outbred livestock population
with a granddaughter design. They found a good agree-
ment between these methods in their location estimates.
Sillanpadé and Arjas (1998, 1999) compared their Bayesian
method with SIM and MQM using simulated data sets
and inbred and outbred experimental designs. Hurme et
al. (2000) further compared the Bayesian method of
Sillanpaa and Arjas (1999) with single-marker-regres-
sion using data from Scots pine. Yi and Xu (2000b) com-
pared their Bayesian method with an ML-based method
in simulated data. Royall (1997), Vieland (1998) and
Vieland and Hodge (1998) compared Bayesian and clas-
sical statistics, providing some considerations of a more
general nature. Interesting discussions can aso be found
in Dupuis (1996) and Dupuis and Siegmund (1999). Re-
cently, Shoemaker et al. (1999) emphasised some areas
in genetics where Bayesian statistical methods can be
particularly useful.

The purpose of this paper is to compare the frequent-
ist methods of SIM and approximate MQM mapping
with the Bayesian multiple QTL analysis. For this com-
parison we used the experimental data from a single
large full-sib (FS) family derived from a cross between
two apple cultivars. The methods are compared with re-
spect to: (1) the models used, (2) the number of QTLS
mapped, (3) the estimated map positions of the QTLs
and their accuracies and (4) the choice of marker cofac-
tors. The same data set has been previously analysed us-
ing SIM by King et al. (2000).

Materials and methods

Experimental data

A cross between the apple cultivars ‘Prima’ and ‘Fiesta’ was car-
ried out at Plant Research International, the Netherlands, in 1988,
using Prima as the female parent. A full-sib progeny consisting of
152 genotypes from this cross was vegetatively propagated, and
replicate sets or subsets of this progeny plus parents were planted
at seven sitesin six countries in Europe in 1993 (King et al. 1991;
King 1996). In 1995 and 1996 apples from trees from six sites
were analysed for fruit firmness using two test methods: (1)
acoustic resonance frequency (RF) (Abbott et al. 1992; Chen and
De Baerdemaker 1993) and (2) hand penetrometer (PEN)
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Fig. 1 Scatter plot of penetrometer estimates by resonance fre-
quency estimates of the PrimaxFiesta progeny. Each circle indi-
cates an individual in the progeny

(Magness and Taylor 1925; Bourne 1974). For both sets of pheno-
typic measurements, data over sites and years were analysed using
REML in GeENsTAT 5, weighting with the number of apples per tree
measured and taking as random factors the site/lyear combination
and trees of the same genotype within a site/year; the genotype
was taken as fixed. In this way estimates for each genotype were
obtained, and these were used for QTL analysis. For the resonance
frequency the estimates were over three site/lyear combinations;
for the penetrometer readings the estimates were over nine
site/lyear combinations. Figure 1 shows a scatter plot of the PEN
estimates plotted against the RF estimates.

Multipoint information content

The information content of each linkage group was calculated, us-
ing the experimental genotype data and taking into account the
numbers of missing values and the upgrading of multipoint marker
information if markers were only partly informative or if there
were missing values. The information content was first defined,
for each individual, as the maximum of the four QTL genotype
probabilities at a map position. (Here each QTL genotype corre-
sponds to one of four possible pairs of parental aleles whose
grandparental origins are known.) These maxima were then aver-
aged over the individuals in the progeny.The information content
was calculated with steps of 1 ¢cM and varied from linkage group

Fig. 2 Information content for
linkage group LO1, using ten
neighbouring marker intervals
for upgrading linkage informa-
tion for missing or partially

missing marker genotypes RS NP PR L D

(right axis, upper graph) and
empirical frequency distribu-
tions of the estimated positions
of QTLs represented as fre-
quency polygons (left axis,
lower graph). Results are from
interval mapping of bootstrap
samples of the PEN data from
152 individuals in the Pri-
maxFiesta progeny, linkage
group LO1. A stepsizeof 1 cM
was used. Symbols on the hori-
zontal axis indicate marker po-
sitions. The left y-axis corre-
sponds to the frequency of the
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to linkage group, with a minimum value of 0.58 and an average of
0.86 over the whole genome. The information content of linkage
group LO1, using a maximum of ten neighbouring markers to up-
grade the information, is shown in Fig. 2.

QTL analysis

Linkage maps of Prima and Fiesta were constructed using 290
markers to genotype both parents and the progeny (see Maliepaard
et al. 1998). Sixty-seven multi—allelic markers for which both par-
ents were heterozygous allowed the two parental maps to be inte-
grated (17 linkage groups). Linkage phases were first estimated
using JoiINMAP™ version 2.0 (Stam and Van Ooijen 1995). The
marker order and distances on the integrated linkage map and the
parental linkage phases were then assumed known in both the fre-
quentist and the Bayesian QTL analysis.

In afull-sib family aQTL or amarker can segregate for four dis-
tinct aleles, i.e. parental mating type Q,Q,xQ3Q,, producing four
different genotypes. Therefore, in both the frequentist and Bayesian
approach, three effects (deviances from the effect of the first geno-
type) are modelled for a QTL and each cofactor. As usual only addi-
tive QTL terms (no epistasis) were considered in the models.

Frequentist QTL analysis

In SIM and MQM mapping, the EM-algorithm (Dempster et al.
1977; Van Ooijen 1992) is used for estimation, and standard statis-
tical procedures are used for testing hypotheses. In MQM, the co-
factor effects are estimated simultaneously with the QTL effects
(Jansen 1994). The LOD profiles over each of the linkage groups
were used to determine the map positions of QTLs. These were es-
timated as the position with the maximum LOD score on alinkage
group. Uncertainty of the map position was indicated by a 2-LOD
support interval (Connedly et al. 1985; Van Ooijen 1992). The
number of QTLs was inferred from the number of LOD peaks ex-
ceeding the significance threshold.

In addition to the determination of the 2-LOD support intervals,
bootstrapping (Efron 1979, 1982) was aso used to obtain approxi-
mate central 95% confidence intervals for QTL positions (Visscher et
al. 1996), which were expected to be more comparable to the Bayes-
ian credible intervals of Sillanpéa and Arjas (1998). The position with
the maximum LOD score was retained after each bootstrap analysis.

In this study, as in King et a. (2000), LOD scores greater than
3.0 were considered as evidence of a QTL. LOD scores greater than

Information content (dotted line, right axis) & bootstrap results L01, PEN data
10,000 bootstrap samples (solid line, left axis)
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4.5 were considered significant. These values correspond to a per
linkage group error rate of 5% for the average linkage group length
(63 cM) and a genome-wide error rate of 5% (Van Ooijen 1999).

Flanking markers were used to calculate the probabilities of
the four QTL genotypes at a given map position. For missing
marker data and for markers that were not completely informative
with respect to the four possible parental alelic combinations,
marker genotype information from neighbouring markers was
used (‘al—markers mapping’, Knott and Haley 1992; Maliepaard
and van Ooijen 1994). Usually up to five neighbouring markers on
both the |eft- and right-hand side of the marker interval were used
to upgrade the genotype information. Only for linkage group LO1
were ten neighbouring markers used, since there was a group of
markers at one end of the linkage group which provided informa-
tion with respect to one parent only. For cofactors the same proce-
dure was applied in MQM mapping.

The MAPQTL™ 4.0 package (Van Ooijen et al. 2000) was used
both for SIM and MQM mapping in this outbred full-sib progeny.
Results from SIM were checked against results obtained with the
LS approach of Haley et al. (1994) and against the non—parametric
test of Kruskal-Wallis, performed on single markers.

Bayesian QTL analysis

Following Sillanp&a and Arjas (1998, 1999), an exact multiple
QTL model was used for one chromosome while the other chro-
mosomes were controlled by using a preselected set of cofactor
markers. In Bayesian analysis, the QTL mapping problem is not
formulated in a sequential (hypothesis) testing framework as in
frequentist methods. All results of the analysis can be expressed in
terms of the posterior distribution of the unknown variables/pa-
rameters in the model, given the data. Convenient summary mea-
sures for variables of interest, such as the number of QTLs and the
QTL positions, can be defined by considering suitable marginals
of the posterior distribution or corresponding expectations. Bayes-
ian posterior credible intervals (e.g. Sillanpda and Arjas 1998) for
these parameters can be constructed from the marginals of the pos-
terior distribution. In principle, any interval can be taken as a
credible interval. The main advantage of credible intervals is in
their straightforward interpretation in terms of conditional proba-
bilities of containing the unknown parameters given the data.

In the numerical estimation of the model parameters in the
adopted Bayesian hierarchical model (Sillanpéé and Arjas 1999),
the Metropolis-Hastings-Green algorithm was used (Metropolis et
a. 1953; Hastings 1970; Green 1995; Chib and Greenberg 1995;
Waagepetersen and Sorensen 2001). In each round of the estima-
tion, the QTL genotype probabilities were determined for each in-
dividua in the offspring given current values for completed fully
informative markers and/or QTLs. In each round, incomplete
marker data were completed for missing genotypes and linkage
phases and coded according to their grandparental origin by using
all other markers in the same linkage group. With equal probabili-
ties, this block-updating was conducted for the whole family and
separately at each marker point or for the entire haplotype and
separately for each individual. This modification of the sampling
scheme of Sillanpd& and Arjas (1999) is described in the Appen-
dix of Hurme et a. (2000). The idea behind it was mentioned in
Thompson and Heath (1999). Missing cofactor genotypes were
augmented by assuming marker independence and by using M-H
where acceptance of the imputed values was aways conditional
on the current parameter values. Initialy in each MCMC run,
three QTLs (which was also the maximum allowed) were placed
evenly along each linkage group to be analysed. A truncated Pois-
son distribution was used with mean equal to 2 as the prior for the
number of QTLs. The prior for the residua variance was uniform
over therange [0.0, 3.35] in the RF data and over [0.0, 0.69] in the
PEN data. The right endpoints of these ranges are equal to the
variance estimates from the corresponding data. The prior for the
regression intercept was taken to be uniform over [-100, 100] in
the RF data and over [-13, 13] in PEN data. The prior for QTL
genotype effects was N(0,100) in both data sets, and the prior for
cofactor effects was uniform over [-13, 13]. The prior for the QTL

location was taken to be uniform over the entire length of the par-
ticular linkage group. The random walk (see Chib and Greenberg
1995) proposal ranges in the MCMC analyses were chosen to be
2.0 (location), 1.0 (intercept), 0.2 (residual S.D.), 1.5 (QTL coeffi-
cients) and 2.0 (cofactor coefficients). The proposal distribution
for new QTL effects was N(0.0, 0.5). The burn-in period was not
deleted, since high numbers of MCMC cycles (from 2500000 to
5000000) were run in al analyses. In the estimation (Monte Carlo
averaging), the MCMC samples were thinned, using only every
tenth iteration, because of the limited storage capacity. Credible
intervals for the positions of QTLs were constructed from the pos-
terior QTL intensities, asin Sillanpdéa and Arjas (1998).

The posterior distribution of the number of QTLSs in a mapped
chromosome can be used as an initial summary measure of the anal-
ysis. Based on this measure, chromosomes showing some QTL ac-
tivity can then be investigated further by looking at their posterior
QTL intensities (Sillanpdé and Arjas 1998) along the chromosome.

It is important to note here that the whole Bayesian analysis
for experimental data was conducted independently from the map-
ping results obtained by MQM. All MCMC calculations were per-
formed using MuLTIMAPPER/OUTBRED Software (http:/www.rni.hel-
sinki.fi/~mjs). An overview of packages used in this study for
frequentist and Bayesian multiple QTL analysis is described in
Manly and Olson (1999).

Selection of cofactors, frequentist analysis

After a first round of SIM, cofactors were selected from regions
where the LOD was greater than 3.0. MQM analysis was then per-
formed using these markers as cofactors. The low threshold was
chosen since in SIM the error variance still comprises genetic
variance from other segregating QTLs and therefore the full power
of the test is not yet used. In subsequent rounds of MQM map-
ping, marker cofactors were added or dropped according to this
3.0 threshold. Because of the ‘all-markers mapping’ approach
Maliepaard and van Ooijen 1994 any marker could be chosen as a
cofactor, regardless of the segregation type (informativeness) or
the number of missing values. Initially, no marker cofactors were
used on the linkage group where a QTL was fitted. However, for
linkage groups with evidence of a QTL, MQM mapping was also
done using cofactors on those same linkage groups in order to
check for the possibility of having detected a ghost QTL.

Selection of cofactors, Bayesian analysis

In the Bayesian approach a single preliminary analysis was per-
formed (without marker cofactors) using the multiple QTL model,
alowing for up to three QTLs on each linkage group under inves-
tigation. Based on this multiple-QTL analysis, cofactors were then
chosen from linkage groups in the regions showing higher than 0.2
posterior probability for single or multiple QTLs. In fact, a rather
sharp distinction between linkage groups with and without evi-
dence of aQTL was observed. For the selected linkage groups, co-
factors were chosen from the regions showing high and condensed
posterior QTL intensities.

Note that in the Bayesian approach no cofactors were chosen
from the linkage group to be analysed because a multiple QTL
model was used. Following Sillanp&é and Arjas (1999) cofactor
genotypes were augmented without using genotype information
from neighbouring markers, although in principle this can be done
the same way as for the QTL genotypes. Instead, the most infor-
mative marker in a region (distinguishing four genotypes in the
progeny) was chosen as a cofactor, or a set of two or more cofac-
tor markers, in order to maximise the information content.

We also remark that from an inferential perspective a more co-
herent Bayesian procedure would have been to consider all link-
age groups jointly in a single variable dimensional QTL analysis,
aways using the "current” QTLSs as cofactors. The reason for per-
forming separate analyses for each linkage group, each being con-
ditional on cofactors determined in a preliminary analysis, was es-
sentially that this made the computations much less demanding.



Results
Preliminary analysis (no cofactors used)
Freguentist QTL analysis (S M)

For the PEN data the threshold was exceeded on five
linkage groups, including LO1 and L10. For the RF data,
the LOD score threshold of 3.0 was exceeded on linkage
groups LO1 and L10 (Table 1). The LOD score graph for
PEN for LO1 clearly showed a double peak; the graph of
RF was rather irregularly shaped, but also showed multi-

Table 1 Preliminary analysis (without cofactors). Maximum LOD
score and the posterior distribution of the number of QTLs in link-
age groups with evidence of a QTL in simple interval mapping
and/or Bayesian analysis with penetrometer and acoustic reso-
nance frequency data

Linkagegroup  Frequentist: Bayesian:
Maximum LOD  Posterior distribution
Number of QTLs
0 1 20r3
Penetrometer
LO1 6.5 0.56 0.43 0.00
L03 3.6 1.00 0.00 0.00
L08 4.7 0.96 0.03 0.00
L10 7.4 0.09 0.91 0.00
L15 35 0.98 0.01 0.01
Others <3 >0.98 <0.01 <0.02
Resonance frequency
LO1 4.4 0.26 0.73 0.01
L10 45 0.31 0.68 0.00
L11 15 0.25 0.73 0.03
L15 2.6 0.73 0.26 0.01
Others <3 >0.92 <0.08 <0.03

Table 2 2-LOD support intervalsin the frequentist QTL (SIM and
MQM) analyses and credible regions in the Bayesian (preliminary
and final) analyses for linkage groups L01, L10 and L 15. The pos-
terior probabilities of containing at least one QTL in the corre-
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ple peaks (Fig. 3). The 2-LOD support intervals for the
PEN and RF datafor LO1 and L10 are presented in Table
2 andindicated in Fig. 3.

Bayesian QTL analysis

The preliminary Bayesian analysis of the PEN data pro-
vided evidence of a single QTL on linkage groups LO1
and L10. On all other linkage groups the posterior proba-
bility of one or more QTLs was less than 0.04. Analysis
of the RF data resulted in three linkage groups where the
posterior probability of at least one QTL exceeded 0.5.
For linkage group L15 the posterior probability for one
QTL was 0.26, on al other linkage groups the posterior
probability of one or more QTLs was less than 0.08 (Ta-
ble 1). The data did not support the existence of more
than asingle QTL on any of the linkage groups, although
for linkage group L01 a strong bimodality was observed,
both for the PEN and the RF data (Fig. 3). The credible
regions for the PEN and RF data are indicated in Table 2,
together with the posterior probabilities of containing at
least one QTL in these respective regions.

Choice of cofactors and final analysis
Frequentist QTL analysis

Based on the results of the preliminary analysis, cofactor
markers were chosen on L0O1, LO3, L08, L10 and L15 for
the PEN data. Using these cofactors in MQM mapping,
the maximum LOD score of linkage group LO3 de-
creased to a value below 3.0, so that the marker on L03
was dropped as a cofactor. No new regions with LOD
scores greater than 3.0 were obtained in the next round.
The final model for the PEN data included cofactors on
linkage groups LO1, L10 and L15. On these linkage
groups the LOD significance threshold of 4.5 was ex-

sponding credible regions were estimated directly from the
MCMC runs, as the proportion of iteration cycles in which there
was at least one putative QTL within the region

Linkage group Preliminary analysis (without cofactors)

Final analysis (including cofactors)

Frequentist: Bayesian: Posterior Freguentist: Bayesian: Posterior
SIM Preliminary Probability MQM Final Probability
Penetrometer
LO1 [39.0, 53.4] [29.1, 33.5][0[44.2, 49.9] 0.39 39.0, 50.4] 29.9, 49.3] 0.72
L10 [61.7, 76.2] [63.1, 74.3] 0.89 61.7, 76.2] 62.3, 72.7] 0.92
L15 0.0, 17.4] 0.0,9.1] 0.19
Resonance frequency
LO1 [17.8,53.9] [20.1, 37.5][1[40.8, 49.9] 0.71 23.3,53.9] 22.1,49.3] 0.57
L10 [59.7, 76.2] [62.2, 73.4] 0.66 58.7, 76.2] 61.6, 74.6] 0.52
L15 [0.0,21] O[7.3,9.5] O 0.18 0.0, 32.9] 0.0, 17.4]0 0.57
[25.4, 37.0] 23.8,30.9]
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ceeded. The LOD score for linkage group L08 (4.3) was
just below this threshold (Table 3). Compared to the SIM
results, the 2-L.OD support interval on LO1 wasjust alit-
tle bit smaller, on L10 the interva was identica
(Table 2).

For the RF data, two cofactor markers were chosen,
on LO1 and L10. In the analysis of the RF data with
these cofactors, a LOD score of 4.0 was obtained on
linkage group L15. LOD scores for the markers on LO1
and L 10 remained above 3.0. A cofactor marker on link-
age group L15 was added and in the next round no new
genome regions with LODs over 3.0 were found. The fi-
nal model for the RF data included only the cofactor
marker on linkage group L10. LOD scores for the other
linkage groups were below the significance threshold of
4.5 (Table 3). For the RF data also, the 2L OD support
interval for LO1 was a bit smaller than in SIM but much
larger than the intervals estimated for the PEN data. The
L10 interval was practically identical to the situation in
SIM and aso to the intervals estimated for the PEN data
(Table 2). The effect on linkage group LO1 was mainly a
contrast between the aleles from Prima; on L10 mainly
from Fiesta (King et al. 2000).

Bayesian QTL analysis

For the PEN data three cofactor markers were chosen:
two on linkage group L0O1 and one on linkage group L 10.
For the RF data a total of seven cofactors were chosen
on linkage groups LO1, L10, L11 and L15. These con-
sisted of two markers on LO1 to cover a larger area of
this linkage group (to account for the two peaks), two on
each of linkage groups L11 and L 15 to cover for all pos-
sible allelic combinations and also a larger area, and one
informative marker on L 10.

For the PEN data there was strong evidence for a
QTL on linkage groups LO1 and L10, some evidence of
aQTL on L15 and hardly any evidence for a QTL on the
other linkage groups. In the analysis of the RF data with
cofactors, most linkage groups did not present any evi-
dence of the presence of one or more QTLs. There was
evidence of a single QTL on linkage groups LO1, L10
and L15 (Table 3). There was no support to more than a
single QTL on any of these linkage groups. The posterior
probability of a QTL on linkage group L11 decreased

Fig. 3A-D LOD score graphs for interval mapping (SIM) and
MQM mapping and Bayesian posterior QTL intensity graphs of
preliminary and final analyses of linkage groups which showed
evidence of a QTL. Posterior QTL intensities with bin length
1 cM are represented as frequency polygons. Explanations of the
different line types are given in the upper left corner of each pan-
el. Bars at the bottom of each graph indicate 2-LOD support inter-
vals and Bayesian credible intervals for the four situations, in the
same order (top to bottom) as the legend. Symbols on the horizon-
tal axes indicate marker positions. The left (right) y-axis corre-
sponds to the LOD score (posterior QTL intensity). A Linkage
group LO1, PEN data, B linkage group L10, PEN data, C linkage
group LO1, RF data; D linkage group L10, RF data
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Table3 Fina anadysis (including cofactors). Maximum LOD
score and the posterior distribution of the number of QTLs in link-
age groups with evidence of a QTL in MQM mapping and/or
Bayesian analysis with penetrometer and acoustic resonance fre-
quency data

Linkagegroup  Frequentist: Bayesian:
Maximum LOD  Posterior distribution
Number of QTLs
0 1 2o0r3
Penetrometer
LO1 7.6 0.22 0.78 0.00
L03 2.6 1.00 0.00 0.00
L08 4.3 0.99 0.01 0.00
L10 9.2 0.05 0.95 0.00
L15 5.8 0.79 0.21 0.00
Others <3 >0.98 <0.01 <0.03
Resonance frequency
LO1 4.2 0.41 0.59 0.01
L10 5.0 0.43 0.56 0.01
L11 15 0.94 0.06 0.00
L15 4.0 0.37 0.62 0.01
Others <3 >0.91 <0.09 <0.01

considerably when cofactors were used. Figure 3 shows
some of the results from both analyses with and without
cofactors. Credible regions for the PEN and RF data are
given in Table 2, together with the posterior probabilities
for the presence of at least one QTL in these respective
regions.

Discussion

Comparison of the frequentist with the Bayesian
approach: correspondence

The frequentist and Bayesian approach for multiple QTL
analysis were both applied to two data sets collected
from a single full-sib family of apple. The data sets, PEN
and RF, were different in the way the fruit firmness phe-
notypes were measured. Phenotypes in both data sets
were genotype means over different sites and years.
King et al. (2000) analysed the individual data sets per
site and year previously, together with additional sensory
measurements of fruit firmness. These individual data
sets indicated possible QTLs on linkage groups L01 and
L 10 and some evidence for QTLs on L15. In the present
study evidence was also found for QTLs on these link-
age groups, and for these there was a good agreement
between the results of the frequentist and the Bayesian
method. Both methods indicated a single QTL for fruit
firmness (both for the PEN data and the RF data) on
linkage groups LO1 and L10, and perhaps L15 (in the
frequentist approach stronger evidence for L15 came
from the PEN data, whereas in the Bayesian approach it



1250

was from the RF data). For these linkage groups there
also was a very good correspondence of the estimated
QTL positions, as indicated by the LOD score and
Bayesian QTL intensity peaks (Fig. 3).

There was no indication of a second QTL on either of
these linkage groups, even though the graphs for linkage
group LO1 showed bimodality for the Bayesian intensity
for both the PEN and the RF data. This was also visible
for the LOD score but less extreme than in the Bayesian
analysis. This bimodality could not be explained by the
variation in the information content, since the informa-
tion content is very high throughout this linkage group
and there is no visible decrease in information in the re-
gion where the posterior density or the LOD score drops
(Fig. 2). Upon inspection of the marker data, it was
found that there were three double recombinants in the
region between 36 cM and 43 cM. However, these could
not explain the decrease in the LOD score curve as was
verified by more detailed inspection (results not shown).
When studying the single recombinants in the region be-
tween 29 cM and 43 cM, we observed that the phenotyp-
ic values of these individuals indeed could explain a de-
crease in significance going from 29 to 38 cM, and a
subsequent increase in significance from 38 to 43 cM. It
seems likely that the sampling bias among the recombi-
nants is responsible for the observed bimodality of the
curves. It cannot be excluded that there may also be
some errors in the marker data or in the map order and/or
the map distances.

Comparison of the frequentist with the Bayesian
approach: differences

Although the results of the Bayesian and the frequentist
approach agreed very well on QTLs on linkage groups
LO1 and L10, still some differences between the methods
were observed. In the preliminary frequentist analysis of
the PEN data, LOD scores larger than 3.0 were also
found on linkage groups L03, L0O8 and L15. The prelimi-
nary Bayesian analysis did not provide evidence for
QTLs on these linkage groups. On the other hand, the
preliminary Bayesian analysis resulted in an elevated
posterior density for aQTL on linkage group L11 (RF da-
ta), whereas with the frequentist approach a maximum
LOD score of only 1.5 was obtained (Table 1). Addition-
ally, the non—parametric test of Kruskal-Wallis was used
to verify the results without being required to assume
normality of the data. This test also indicated the possible
presence of QTLs on linkage groups LO3 and L08 and
dlight evidence of a single marker on linkage group L11.
In this study rather diffuse priors for parametersin the
model were used, and therefore we do not believe that
posterior inferences were noticeably influenced by the
priors. It is aso unlikely that the use of the ML proce-
dure gave rise to the high LOD scores in linkage groups
L03, LO8 and L15, since the LS method (Haley et al.
1994) resulted in amost equal LOD scores. Apparently,
the difference between the Bayesian and frequentist

method is also not just a matter of a difference in power:
evidence for a QTL is found with one method and not
with the other, as well as vice versa.

Cofactor choice and its effect

In both methods the choice of cofactors was based on the
results from the preliminary analysis, so marker cofac-
tors were chosen only in those regions with elevated
LOD scores or high QTL intensities. Note that this does
not necessarily provide us with the optimal set of cofac-
tors. For example, in MQM when two QTLS are present
on alinkage group, the highest LOD score may be found
in between these two (as a ghost QTL). Choosing a co-
factor at that position may absorb most of the genetic ef-
fects generated by the two QTLS, so that these will not
be detected in subsequent rounds. This could be prevent-
ed by performing a backward elimination procedure to
select cofactors on a linkage group of interest (Jansen
1993). In this study possible ‘ghost QTLS were checked
for on hindsight by using different pairs of cofactors on
those linkage groups with evidence of a QTL. In the
Bayesian multiple QTL model, this ‘ghost QTL' behav-
iour is not expected. The choice of an incorrect cofactor
may also occur when the information content is rather
variable across the linkage group. In smaller data sets
there is also the danger that, due to chance, a major QTL
has distorted segregation within the marker classes of a
marker on a different linkage group or partial cosegrega-
tion with an unlinked marker. When this occurs, another
type of ‘ghost QTL' may be detected on the latter
through association with the real QTL. In fact, partial co-
segregation was observed between a set of marker pairs
on linkage groups LO1 and L 08, and this may explain the
decrease in the LOD score for L08 when a cofactor on
L 01 was used. However, currently it is not yet feasible to
compare and evaluate efficiently different possible sets
of cofactors. The logical solution to this problem would
be to consider the entire genome in a single multi-
ple-QTL analysis.

Although the choice of cofactors was based on the
same principles in both methods, the cofactors were
used differently in the models, and also the choices were
different. Consequently, the effect of using the marker
cofactors seemed different in the two methods. In the
frequentist method the effect was generally an increase
of the LOD scores, while the shape of the LOD score
graph remained very similar. In the Bayesian analysis
the differences were more notable. For L11 the change
was rather drastic, since the posterior probability for a
single QTL on this linkage group decreased from 0.73
down to 0.06. The increase for L15 (from 0.26 to 0.62)
was also rather large. For the Bayesian analysis, the
shape also changed. For example, for the PEN data the
bimodality on LO1 became stronger when cofactors
were used, and the intensity in the region around 30 cM
increased so that the two peaks became almost equally
high.



Position estimates and their accuracies

The estimated positions of QTLs were very similar for
both methods and data sets and irrespective of the cofac-
tors chosen. The correspondence is striking especially
for linkage group L10. The QTL position estimates ob-
tained with the Bayesian approach visually appear to be
more accurate than the results with the frequentist ap-
proach. Thisis because they show sharper peaks, where-
as the LOD curve is rather flat. The chosen credible re-
gions, however, are not very different from the 2-LOD
support intervals. Note that the results cannot be com-
pared directly. With respect to the visual appearance of
the peaks, the results from the Bayesian analysis were
expected to be more comparable to results from boot-
strapping. Indeed, these were more similar (Fig. 2). A
part of the difference is explained by the logarithmic
scale of LOD scores, whereas results from the Bayesian
analysis and from bootstrapping are based on frequency
distributions. In the bootstrapping results we observed a
similar bias as Walling et a. (1998), resulting in higher
frequencies of the maximum LOD score at the marker
positions, especially near the estimated QTL position.
Unlike in the examples considered in Sillanp&d and Arjas
(1998, 1999), the posterior probabilities that a given
credible region contains at least one QTL were here cal-
culated directly from the MCMC output, as explained in
Table 2. Such adirect approximation seems to give more
accurate numerical estimates that the earlier method
which was based on a Poisson approximation. Where the
LOD support intervals are concerned, these are defined
differently than confidence intervals. Van Ooijen (1992)
demonstrated, both for BC and F, populations, that
2-LOD support intervals may be conservative only if the
QTL effect is large. Dupuis and Siegmund (1999)
showed with simulations that 1-LOD and 1.5-LOD sup-
port intervals provided a QTL coverage probability of
approximately 90% and 95%, respectively, for dense
maps (markers at every 1 cM) and an even greater per-
centage for sparse maps. These authors also compared
confidence regions in simulations with a single QTL and
concluded that the coverage probabilities of LOD sup-
port regions and Bayesian credible intervals were rough-
ly comparable in large samples.

Multiple linked loci

In this study we found no evidence for more than a sin-
gle QTL on any linkage group, so that we were not able
to compare the performance of the two methods when
more QTLs are present. In general, the Bayesian method
seems to be well suited to detect multiple QTLs on a
linkage group since these are modelled explicitly. Thisis
supported by simulation studies (Sillanpdd and Arjas
1998, 1999). Although MQM mapping can also be used
to detect multiple QTLs on a single linkage group, the
necessary computation time may turn out to be long if
there are also cofactors on other linkage groups and if
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the ‘all-markers mapping’ approach is applied to up-
grade marker information for al cofactors and the fitted
QTL. This may be solved by using more multi-allelic
markers and by omitting those QTL genotype combina-
tions which have a probability close to zero (Jansen
1995).

Environmental cofactors

In neither the frequentist nor the Bayesian method were
environmental cofactors such as the site/lyear combina-
tions included in the model, athough this is certainly
possible and has been done (i.e. Jansen et al. 1995;
Tinker and Mather 1995; Korol et al. 1998; Hurme €t al.
2000). This would aso be more in agreement with the
Bayesian paradigm of using all prior information and of
including uncertainties rather than using point estimates.
The use of estimated means over sites and years for QTL
mapping may have undesirable effects since some genet-
ic effects may be lost in an adjustment for environmental
cofactors. It would be preferable to aso include these
environmental cofactors into the analysis and estimate
all effects simultaneously. However, this would be com-
putationally more demanding, and the sample size in this
case would not alow for areliable estimation of all main
and interaction effects.

Conclusion

Both methods provided evidence for the main QTLs on
the same linkage groups, and with similar map positions.
However, there were also some differences with respect
to evidence for QTLs on other linkage groups. The re-
sponse to adding cofactor markers was also somewhat
different. The shape of the graphs of the LOD score and
Bayesian posterior intensity were found to differ as well.
Neither method provided evidence for more than a single
QTL on any linkage group.
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